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In conclusion, we note that the functions (2.1) can be written in the form of a differential operator 131, 
provided that we put W = F’ (5) where F(c) . IS an arbitrary analytic function of the argument 5 (2.2). 
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THE INTERACTION of two dislocations at a distance from each other, in an anisotropic medium with elastic 
anisotropy of general type is considered and the forces acting on the dislocation defects determined. The 
solution is constructed using the method of multipolar expansions. 

The mechanical properties of crystalline bodies depend to considerable degree on the presence of defects 
within them and their interaction with each other. The energy of interaction between the defects is the basic 
factor determining their mutual distribution and orientation within the crystal. 

The publications available in this field deal either with the determination of the energy at which an isolated 
dislocation loop appears [l-3], with the associated forces acting on an isolated defect [4] and with the stress 
fields near the dislocation loop [5], or with the study of the interaction of dislocation defects between each other 
[6-lo] or with foreign inclusions [ll-131. 

In spite of the fact that the majority of crystals are elastically anisotropic, the investigations leading to the 
determination of the energy of interaction between the dislocations were carried out, basically, for isotropic of 
transversally isotropic (hexagonal~ crystals. This can be explained by the need to use the fundamenta1 solutions 
of the equations of equilibrium, whose derivatives are used, in the majority of cases, to express the energy of 
interaction between the dislocations. 

The fundamental solutions of the equations of equilibrium are constructed in closed form for isotropic media 
(Kelvin solution) and for a subclass of o~ho~op~c materials, which includes transversally isotropic media, in 
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[14]. In the general case of elastic anisotropy only numerical methods of constructing the fundamental solutions 
are known [15]. 

The approach employed in [15] is used below to obtain an expression for determining the energy and the 
forces of interaction of two dislocation 
general type of anisotropy. 

loops separated from each other in an anisotropic medium with a 

1. FUNDAMENTAL EQUATIONS, OPERATORS AND SYMBOLS 

We consider an elastic anisotropic medium whose equations of statics (equilibrium) have the form 

A (8%)~ G -div C.. (Vu) (1.1) 

where u is the displacement vector and C is a tetravalent, strictly elliptical elasticity tensor: 

(n@Q**c**(g@rl)>o, V%~ER3, n,g+o (1.2) 

We assume that the medium in question is hyperelastic, which ensures the symmetry of the tensor C with 
respect to the terminal pair of indices: C”“~ = C”““. Condition (1.2) ensures the ellipticity of the matrix 
symbol A* : 

A* (g) = (2n)75.C.g 

obtained by applying the Fourier transformation 

f* (U = C f (4 ew 

to Eq. (1.1). 
Using the symbol A* we can easily construct 

Fourier-transformed basic solution: 

(1.3) 

(--2ni x*g)ds, f E La (P) 

the inverse control E* which represents the following 

E* (5) = A,,* (Qidet A* (g) (1.4) 

where Ao* is the matrix of the cofactors of the symbol A*. Formula (1.4) shows that the symbol E* is elliptical, 
real-analytic everywhere in R3\0 and homogeneous in 15 1, of degree -2. Henceforth we shall also require the 
stress operator symbol 

T,,* (g) = 2niv.C.g (1.5) 

where u is the vector of the unit normal to the surface under investigation. From (1.5) it follows that, in the case 
of a hyperelastic material, the transposed symbol TV*’ has the form 

Tcf (5) = 2niz.C.v (1.6) 

2 REPRESENTATION OF THE SOLUTION 

The displacement field in a medium containing an isolated dislocation, can be written in the form of a double 
layer potential 

u (x) = s br .T,,, (a,) E (x - y’) dy’, (2.1) 
Ql 

where bl is the Burgers vector given in Szr and a2 is a plane region bounded by the contour aRr representing the 
dislocation loop. 
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Note. The representation (2.1) is actually identical with the expression obtained by Volterra [16] for 
describing the displacements in a crystal containing a given dislocation. In [16] the general case was studied 
when the vector bl could be variable and the dislocation zone represented a part of some curvilinear surface in 
R3. Following this, Burgers in [17] proposed that dislocations with constant vector bl, called the Burgers 
vector, should be discussed. For a constant vector bl the representation (2.1) is invariant with respect to the 
surface carrying the dislocation. It is for this reason that we can speak, in the case when aR1 is a plane closed 
curve, of a plane region carrying the dislocation. In [17] and later in [18], formulas were obtained for an 
isotropic elastic medium, reducing the integral over fii in (2.1) to a contour integral over a$. No such 
formulas are known for the case of an anisotropic medium with a general type of anisotropy. 

The stress in the plane in which the second dislocation loop fIz is situated, is given by the formula 

t(x)=TvJaJ \ bl.T,.1(3$3(x-::;‘)dy’, XE s22 

Ql 
(2.2) 

The energy of interaction between two distant dislocation loops is the work necessary to form the second 
dislocation loop within the stress field generated by the first loop [9, lo], i.e. 

ll‘= - bz.t(x’)ds’-_, - 
s 

rues (St,) mes (Qp) bs 1 TV2 (ax) bi. T,., (a,) E (x2 - yI) (2.3) 
Qz 

where x2, yi are the coordinates of the “centres” of dislocations ai and 02 respectively. Henceforth it will be 
convenient to place yi at the origin of coordinates in R3. 

Expression (2.3) contains the unknown fundamental solution E. In order to obtain the necessary 
computational formulas we shall consider the symbol of the integrodifferential operator 

G v,,vl (x - Y) = -T,.?t (UT,, ((7,) E (x - Y) 

When (1.5) and (1.6) are taken into account, the symbol G,*l,,, takes the form 

GZ,, YI (6) = 4n2 (v,.C.g).E.(g.C.v,) 

(2.4) 

(2.5) 

3. THE ENERGY AND FORCES OF INTERACTION 

When the material of the medium in question is hyperelastic and vi = v2, i.e. when the dislocations have the 
same orientation, the following assertion holds: 

Assertion I. The symbol G,*,,,, is positive semi-definite. 

Proof. The proof is based on the strict ellipticity of the symbol E* ensuring that the following inequality 
holds: 

rl+:,, v2* 9 = 45~2 ((11 @I v)..C.Q.E* (E).(g.C.(v 63 q)) > 0 

Assertion 2. The operator G:,,,, can be represented in the form G y,,yz = GE ,+ + Gi,+, where G”,,,,, is a 
constant operator (matrix) and Gi,,,Z is the singular matrix operator. 

Proof. Since the symbol E* of degree -2 is homogeneous in ]<I, it follows that the symbol Gz,,,, is 
homogeneous of degree 0. Assuming that Gc,,,, is real-analytic in R3\0 and that Marcinkiewicz theorem on 
multiplicators holds, we obtain the result required. Also, if the mean value (on integrating over the unit sphere 
in R3) of any one component of the symbol G,?;,,, is non-zero, then the corresponding component of GE,,1)2 will 
also be non-zero. 

Taking (2.3) into account, we can write the formula for the energy in the form 

W z mes (Q,)mes (Q,) b2.Gt1, zl*bl (3.1) 
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The specific form of the singular kernel Gi,,y2 is found as follows. 
Let the following expansion of the symbol Gt,,Y2 in series in spherical harmonics be given: 

(3.2) 
p=o, 2.. . k=l 

where Y&’ are spherical harmonics and the matrix coefficients G& are determined by integrating over a 
sphere of unit radius in R3 

Gp’ ’ : (2n)+ 2’1, Y2 s 
Gzl, y2 (E ) Ykp (E’) di 

S 

The fact that only harmonics of even degree appear in the expansion (3.2) is due to the positive homogeneity 
of the symbol Gz,,“*. An inverse Fourier transformation of (3.2) yields 

02 2Pfl 

G;,, Jx) = n-'/e 
r ((P +3)/z) 

r (P/2) > 
1 GP, k, Y,P (xf) 

v,, z* 
I x I3 

(3.3) 
p=2,4, . . . I(=1 

The force of interaction between the dislocations F = VW is related to the energy of interaction. Inspection 
of the radial component F, = -(VW.r) = -a,W shows that when F,<O, the dislocations attract each other and 
repel each other when F,>O. Taking (3.1) and representation (3.3) into account, we see that the component F, 

is directly proportional to the dislocation energy: 

F,=--3W/]s] (3.4) 

and the asymptotic estimate F, = O( Ix lm4), 1 x -+ m holds for F,. Thus, in order to determine the zones of ( 

mutual attraction or repulsion we must, in accordance with (3.4), calculate the interaction energy on a unit 
sphere S in R3. 

Expression (3.4) yields the following expression for the tangential component: 

F~=F-FF,x=--VW-3W~s~-2x (3.5) 

withasymptoticestimate F,,= O([X~-~), Ixj+m. 

If we assume that W is unimodal within the limits of the constant sign zones on S, then the formula F = -VW 
will determine the motion of the dislocation loop &_ relative to Cl,. For the loop Rz situated within the zone of 
mutual attraction (W>O) we shall have its motion towards a1 with simultaneous translation into the zone of 
the nearest (negative) relative minimum of W. After this we shall have, in accordance with (3.4), motion along 
the radius from the loop 0,. 

Using the above analysis and the asymptotic estimates following from formulas (3.4) and (3.9, we can 
conclude that dislocation walls must form on the lines characterized by the directions on which W reaches 
relative minima. This result, which generalizes the corresponding investigations in [8, lo], holds for media with 
arbitrary elastic anisotropy. 
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STATIONARY surface waves in elastic half-space with boundary conditions corresponding to a combination of 
the Winkler model and an inertial layer at the boundary are studied. It is found that the velocity of propagation 
of a harmonic wave depends on the frequency, and the presence of constraints in a direction normal to the 
boundary results in stopping of the low frequencies, when the effect of elastic rigidity and inertia of the 
boundary are taken into account at the same time, and when the inertia of the support has no effect. The 
frequencies are not stopped when the displacements along the boundary are restricted and when the influence 
of elastic rigidity on the normal displacements of the boundary is neglected. 
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